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Abstract

Benchmark numerical solutions for a three-dimensional natural convection heat transfer problem in a cubical cavity

are presented in this paper. The 3-D cavity has two differentially heated and isothermal vertical walls and also four

adiabatic walls. The computations are conducted for three Rayleigh numbers of 104, 105 and 106. The filled fluid is with

air and the Prandtl number is fixed at 0.71. The computed results are efficiently obtained by using the time–space

method, which was proposed by Saitoh (1991) as a highly efficient and fast solver for general heat transfer and fluid flow

problems. In our computations, the high-accuracy finite differences of a fourth-order were employed for the spatial

discretization of governing equations and boundary conditions. In addition the third-order backward finite difference

was used in timewise discretization. The resultant converged flow and temperature characteristics are also presented.

The spatial grid dependency of the solutions was examined on a uniform grid. In addition, the grid-independent

benchmark solutions were obtained by Richardson extrapolation for three cases. The present benchmark solutions will

be useful for checking the performance and accuracy of any numerical methodologies.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

A lot of numerical experiments for a natural-con-

vection-dominated heat transfer problem have been

conducted. Particularly, many experiments for natural

convections in an enclosure were performed motivated

from the wide variety of engineering applications, i.e.,

crystal growth, metal casting and phase change such as

freezing of water for latent heat thermal storage systems.

Some of such numerical experiments became to be

known as the benchmark solutions (BMSs), which

would be used for the investigation of performance of

numerical methodologies solving the incompressible

Navier–Stokes equations and the comparison to each

other.

One of the most popular benchmark problems is that

of laminar flow in a two-dimensional square cavity with
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differentially heated sidewalls. At first, de Vahl Davis

proposed the laminar regime benchmarks for the Ray-

leigh numbers up to 106 using the second-order centered

finite difference scheme [1]. Later, the benchmark solu-

tion with the fourth-order of accuracy was given by

Saitoh and Hirose [2] for Rayleigh number of 104. They

also had verified the stable computations for higher

Rayleigh numbers up to 108. Hortmann et al. [3] have

proposed the benchmark solutions for Rayleigh num-

bers up to 106 using the multi-grid finite volume method

on 640· 640 non-uniform high-resolution grids.

These computations are mainly conducted in two-

dimensions. Naturally, an extension of this BMS to the

three-dimensions has been considered. Mallinson and de

Vahl Davis [4] had already performed the computation

up to the Rayleigh number of 106 using a coarse grid

spacing of only 15· 15· 15. They also investigated the

effect of a certain aspect of a ratio for flow patterns. Le

Peutrec and Lauriat [5] investigated the effect of heat

losses from conductive sidewalls of a cavity for Rayleigh

numbers up to 107 using a non-uniform spacing grid of

31· 31· 31 and 41 · 41· 41. Fusegi et al. [6] calculated
ed.
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Nomenclature

a thermal diffusivity

C some constant value

Gr Grashof number, gbH 3DT=m2

g acceleration due to gravity

H height of cavity

Nu Nusselt number, PrReuT � oT
on

n normal vector

Pr Prandtl number, m=a
Ra Rayleigh number, gbH 3DT=am
Re Reynolds number,

ffiffiffiffiffiffi
Gr

p

S stratification factor

T dimensionless temperature

t dimensionless time or timewise coordinate

U reference velocity, ðgbHDT Þ1=2
u velocity vector

x, y, z spatial coordinates

îi, ĵj, k̂k unit vectors for the x-, y- and z-directions

Greek symbols

a acceleration parameter for iterations

b volumetric expansion coefficient of fluid

x vorticity vector

D grid spacing or difference

/ vector potential

m kinematic viscosity

Subscripts and superscripts

c cooled (cold)

center center of cavity

h heated (hot)

i x-direction grid point index

j y-direction grid point index

k z-direction grid point index

l t-direction grid point index

local local value

max maximum value

mean mean value

min minimum value

n iteration number, normal direction

0 initial value

1/2 mid-plane of cavity

1 x-component

2 y-component

3 z-component

+ dimensional quantities
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an air-filled cubical cavity of two cases for the Rayleigh

numbers of 104 and 106 using a QUICK scheme on fine

and non-uniform 64 · 64· 64 grids, and clarified three-

dimensional structures of flow, vorticity and tempera-

ture in the cavity. They also compared their numerical

results with the experimental measurements [7]. The re-

sults for Rayleigh number of 106 and the steady case by

Janssen et al. [8] were conducted using the second-order

finite volume method on very fine and non-uniform

grids of 120· 120 · 120. Although, they made an as-

sumption that flow and temperature distribution is

symmetrical, they also employed a zero-gradient pres-

sure boundary condition. Wei et al. [9] had pointed out

that such a zero-gradient condition for pressure was not

appropriate for a buoyant-dominated flow.

In this paper, the new benchmark solutions having a

fourth-order of accuracy for the three-dimensional nat-

ural convection problem in a cubical cavity with differ-

entially heated vertical walls present. The computations

are conducted throughout the cavity (i.e., without any

assumptions of symmetric for the solutions). The gov-

erning equations are discretized using the fourth-order in

space and the third-order in time finite difference schemes

on the uniform spatial grids up to 120 · 120· 120.
In order to obtain the solutions, we used the time–

space method (TSM) proposed by Saitoh et al. [10],

which can produce a great reduction of CPU time (up to
1/100th–1/1000th) compared with that of the conven-

tional time-marching methods. The TSM has already

shown its efficiency for a 2-D melting/freezing problem

(Saitoh et al. [11]) and a 2-D high Rayleigh number

problem. When the natural convection problems are

computed by using the ordinary finite difference and fi-

nite volume methods, particularly in cases with a high

Rayleigh number, both linear and non-linear instability

causes the strict limitation of the time step for continu-

ing stable computations. In addition, thin boundary

layers developed near the walls need finer spacing of

numerical grids, thereby, requiring an enormous amount

of CPU time.
2. Time–space method

The conventional time-marching method integrates

step by step in a timewise direction from the initial state,

independently from the spatial directions. This often

creates severe numerical instability due to non-linearity

of the governing equations and/or other instability

sources included in the system to be computed. Even if

implicit-type methods were employed, the time step

should still be very small. This situation requires a great

number of time steps and enormous CPU time. The

natural convection problems with a high Rayleigh



Fig. 1. Conceptual sketch of the TSM and the time–space

domain.

Fig. 2. Schematic model for the natural convection in a cubical

cavity.
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number and phase change (moving boundary problems)

are typical examples. In these computations, high reso-

lutions within boundary layers or a stable tracking of the

moving boundaries are highly required, and an ex-

tremely small time step size is needed due to such re-

quirements.

On the other hand, the TSM takes a different ap-

proach, i.e., the timewise coordinate is referred to as one

of the spatial coordinates, which is included into a time–

space coordinate domain. Fig. 1 shows the conceptual

sketch of the TSM and the relevant time–space com-

putational domain. In general, the TSM employs an it-

erative procedure for obtaining whole solutions in the

time–space domain. The fng-dimensional unsteady

boundary-value problem is transformed into the

fnþ 1g-dimensional steady boundary-value problem,

and the initial condition corresponds to the boundary

condition at t ¼ 0 in the TSM calculation. No error

propagation or accumulation occurs in the time–space

domains. Hence, it is unconditionally stable and the time

step is chosen arbitrarily. The time step will be deter-

mined only to satisfy the degree of accuracy or the de-

gree of resolution in the timewise direction. The TSM

has shown its efficiency for a 2-D melting/freezing

problem [11] with high Rayleigh numbers. Here we ap-

plied the TSM to the three-dimensional natural con-

vection in a cubical cavity.
3. Numerical model of three-dimensional natural convec-

tion heat transfer in a cubic cavity

3.1. The model description and governing equations

The schematic model for the problem is shown in

Fig. 2. The cavity has an aspect ratio of unity and is

filled with the working fluid of air. The Prandtl number

is fixed at 0.71. All surrounding walls are rigid and im-

permeable. The vertical walls located at x ¼ 0 and x ¼ 1

are retained to be isothermal but at different tempera-
tures of Th and Tc, respectively. The remaining four

sidewalls are taken as adiabatic. The buoyancy force due

to gravity works downwards (i.e., in negative z-direc-
tion) as shown in Fig. 2. In addition, the following

assumptions for working fluid are used in the analysis:

(1) Flow is incompressible and laminar.

(2) The Boussinesq approximation is valid.

By virtue of the above assumptions, the non-dimen-

sional governing equations, i.e., the momentum equa-

tion, energy (temperature) equation and mass

conservation equation are transformed into vorticity-

vector potential forms. They can be expressed in Car-

tesian coordinates as follows [4]:

ox
ot

þ ðu � rÞx� ðx � rÞu ¼ 1

Re
r2xþ Gr

Re2
oT
oy

;

�
� oT

ox
; 0

�
;

ð1Þ

oT
ot

þ ðu � rÞT ¼ 1

PrRe
r2T ; ð2Þ

r2/ ¼ �x; ð3Þ

x ¼ r� u; ð4Þ

u ¼ r� /; ð5Þ

where,

r ¼ o

ox
îi þ o

oy
ĵj þ o

oz
k̂k:

Here, x is the non-dimensional vorticity vector, u is

the non-dimensional velocity vector, T is the non-

dimensional temperature and / is the vector potential.

Pr is the Prandtl number (Pr ¼ m=a), Ra is the Rayleigh

number (Ra ¼ gbH 3DT=am), Gr is the Grashof number,
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and Re is the Reynolds number. In this paper, those are

related as Gr ¼ Ra=Pr ¼ Re2. îi, ĵj and k̂k are the unit

vectors for the x-, y- and z-direction, respectively.
The dimensional quantities were non-dimensional-

ized as follows:

ðx; y; zÞ ¼ ðxþ; yþ; zþÞ=H ; ðu1; u2; u3Þ ¼ ðuþ1 ; uþ2 ; uþ3 Þ=U ;

t ¼ tþU=H ; T ¼ ðTþ � Tþ
c Þ=ðTþ

h � Tþ
c Þ;

DT ¼ Tþ
h � Tþ

c ; U ¼ ðgbHDT Þ1=2;

where superscript (+) denotes the dimensional variables,

and subscripts (1), (2) and (3) denote the components for

the x-, y- and z-directions, respectively.
The boundary conditions are given as follows:

ii(i) Temperature

T ¼ 1 at x ¼ 0; T ¼ 0 at x ¼ 1;

oT
on

¼ 0 on other walls:

i(ii) Vorticity

x1 ¼ 0; x2 ¼ � ou3
ox

; x3 ¼
ou2
ox

at x ¼ 0 and 1;

x1 ¼
ou3
oy

; x2 ¼ 0; x3 ¼ � ou1
oy

at y ¼ 0 and 1;

x1 ¼ � ou2
oz

; x2 ¼
ou1
oz

; x3 ¼ 0 at z ¼ 0 and 1:

(iii) Vector potential

o/1

ox
¼ /2 ¼ /3 ¼ 0 at x ¼ 0 and 1;

/1 ¼
o/2

oy
¼ /3 ¼ 0 at y ¼ 0 and 1;

/1 ¼ /2 ¼
o/3

oz
¼ 0 at z ¼ 0 and 1:

(iv) Velocity

u ¼ 0 on all walls;

where n indicates the normal vector to the wall

surface.

Boundary conditions for vorticity are directly derived

from the velocity boundary conditions and the definition

of vorticity (i.e., x ¼ r� u). The initial conditions of

isothermal and being at rest serves as the boundary

conditions at t ¼ 0 in the time–space domain.

For the initial distributions in the time–space domain,

the non-dimensional temperature, non-dimensional ve-

locity vector and non-dimensional vorticity vector at

t ¼ 0 are simply duplicated to all time levels as follows:

T ¼ 1 at x ¼ 0; T ¼ 0 at x 6¼ 0;

u ¼ ð0; 0; 0Þ; x ¼ ð0; 0; 0Þ:
ð6Þ
3.2. Discretization method

All variables are co-located at each grid point. As the

spatial discretizations method, the fourth-order centered

finite difference (FD) scheme was used for the first and

second derivatives in governing equations. For example,

those terms are expressed in the x-direction as follows:

o/
ox

� �
i;j;k;l

¼
/i�2;j;k;l � 8/i�1;j;k;l þ 8/iþ1;j;k;l � /iþ2;j;k;l

12Dx

þOðDx4Þ;
ð7Þ

o2/
ox2

� �
i;j;k;l

¼
�/i�2;j;k;l þ 16/i�1;j;k;l � 30/i;j;k;l � 16/iþ1;j;k;l � /iþ2;j;k;l

12Dx2

þOðDx4Þ; ð8Þ
where Dx denotes the uniform spatial grid spacing in the

x-direction.
As for the unsteady terms, i.e. in timewise direction,

the following third-order backward FD scheme is em-

ployed.

o/
ot

� �
i;j;k;l

¼
11/i;j;k;l � 18/i;j;k;l�1 þ 9/i;j;k;l�2 � 2/i;j;k;l�3

6Dt

þOðDt3Þ;
ð9Þ

where Dt denotes the constant time step size.

In order to discretize the spatial boundary condi-

tions, Saitoh [12] introduced the full fourth-order ex-

pressions with the virtual grid point as follows:

ii(i) Adiabatic condition

Ti�1 ¼ Tiþ1; Ti ¼
48Tiþ1 � 36Tiþ2 þ 16Tiþ3 � 3Tiþ4

25
:

ð10Þ

i(ii) Constant temperature condition and non-slip con-

dition for velocity

Ti ¼ C; Ti�1 ¼ 2C � Tiþ1; ð11Þ

ui ¼ 0; ui�1 ¼ �uiþ1: ð12Þ

(iii) Vorticity boundary conditions

xi ¼ ðr � uÞi; ð13Þ

xi�1 ¼ 5xi � 10xiþ1 þ 10xiþ2 � 5xiþ3 þ xiþ4:

ð14Þ
As for the timewise boundary conditions, we simply

set at t ¼ 0 as follows:

Tl¼1 ¼ C; Tl¼0 ¼ 2C � Tl¼2;

Tl¼�1 ¼ 2Tl¼0 � Tl¼1;
ð15Þ
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xl¼1 ¼ 0; xl¼0 ¼ �xl¼2;

xl¼�1 ¼ 2xl¼0 � xl¼1:
ð16Þ

As the terminal boundary conditions, the assump-

tion to be steady (i.e., oT
ot ¼ 0) are not used in this paper

because of use of the backward FD scheme as Eq. (9).

As an iterative solver for the TSM computations, we

employed the ordinary SOR method and the solution

was obtained in the time–space domain, i.e. the gov-

erning equations were solved point by point using suc-

cessive correction procedures as noted in Section 2.

To explain the TSM formulation, we take the tem-

perature equation as an example. After the TSM for-

mulation, the semi-discrete form is obtained as follows:

T nþ1
i;j;k;l ¼ T n

i;j;k;l þ a
1

PrRe
r2T

�
� oT

ot

�
þ ðu � rÞT

��n

i;j;k;l

;

ð17Þ

where n denotes the iteration number, and i, j, k and l
indicate the grid indexes for the x-, y-, z- and t-directions.
a is the acceleration parameter for iterations.

The convergence of computations is declared when

the following convergence criterion, L2-mean of residu-

als (mean square root of error par grid point) for vor-

ticity equations, are less than 10�6. When this criterion is

satisfied, the temperature and velocity-vector potential

equations show further convergence of 1–2 orders of

magnitude smaller than that of the vorticity equations.
4. Numerical results and discussion

4.1. Original and benchmark solutions

For the present range of Ra numbers, solutions were

obtained on uniform meshes from 40 · 40· 40· 10,
80· 80 · 80 · 10 and 120· 120· 120 · 10.

In this paper, the following characteristic quantities

are presented.

/2center y-component of the vector potential at the

center of the cavity

x2center y-component of the vorticity at the center of

the cavity

u1 max maximum horizontal velocity for x-direction
on center line (x ¼ 0:5; y ¼ 0:5) of the cavity

and its location

u3 max maximum vertical velocity for z-direction on

center line (y ¼ 0:5; z ¼ 0:5) of the cavity and

its location

Nu1=2 average Nusselt number on the vertical mid-

plane (x ¼ 0:5) of the cavity

Numean average Nusselt number on the vertical

boundary (x ¼ 0 or 1) of the cavity

Scenter stratification factor at the center of the cavity
Here, as for the x-direction, the local Nusselt number

at each grid point is defined as

Nulocalðx; y; zÞ ¼ PrRe � u1T � oT
ox

: ð18Þ

The average Nusselt number at the constant x-plane is

defined as

NuðxÞ ¼
Z 1

0

Z 1

0

PrRe � u1T
�

� oT
ox

�
dy dz: ð19Þ

In order to integrate Eq. (19), the Simpson’s rule was

used.

The stratification factor S is defined as

Sðx; y; zÞ ¼ oT
oz

: ð20Þ

In order to compute the temperature gradient, the

fourth-order approximation to the oT=ox, which is

consistent with the finite differentiation of the tempera-

ture equation, was always used except for on bound-

aries. As for the boundaries at x ¼ 0 and 1, u was set as 0
and the temperature gradient was approximated by the

fourth-order one-sided formula, from which the adia-

batic condition (10) was introduced.

The computed results were time-asymptotic and

converged to the steady state from initial isothermal and

quiescent conditions. Although we tested the cases

changing the time step size to be 1.0 or larger (e.g.,

O(10)), the temporally converged solutions were not

affected by this.

A CPU time would take around 40 h for the Ra ¼ 106

case. In this case, the acceleration parameter a for vor-

ticity, velocity-vector potential and temperature equa-

tions are 0.2, 1.7 and 0.3 respectively and we used the

finest 120 · 120 · 120 · 10 uniform grids with the time

step size of 1.0 on the VT-Alpha600 Workstation with

about a 120 Mflops computing speed.

For the three Ra numbers, the converged character-

istic quantities in each grid and some reference values

are compared and tabulated in Table 1. The locations

for maximum velocities are calculated using the least

square method. This method will have small errors as far

as the sufficient grid resolutions are available.

In our results, the converged flow pattern and tem-

perature distributions are symmetrical with respect to

the center of the cavity for all cases. The validity of the

TSM has already been confirmed in Refs. [10,11], hence

the comparison with the conventional or explicit method

were not shown for brevity.

In the case of Ra ¼ 104, the solutions seemed to show

a good convergence for the grid spacing on the

120· 120· 120 grids, particularly in the x2 center and

Scenter. As can be seen in Table 1, our results for u1 max



Table 1

The original solutions at Ra ¼ 104, 105 and 106

Ra Grid size /2 center x2 center u1 max ðzÞ u3 max ðxÞ Nu1=2 Numean Scenter

104 Present 0.025 0.05687 1.1034 0.1989 0.2211 2.0650 2.0814 0.8667

(0.8250) (0.1253)

0.0125 0.05507 1.1019 0.1985 0.2218 2.0638 2.0676 0.8636

(0.8250) (0.1125)

0.00833 0.05495 1.1018 0.1984 0.2216 2.0636 2.0634 0.8634

(0.8250) (0.1167)

Fusegi et al. [6] – – 0.2013 0.2252 – 2.100

(0.8167) (0.1167)

105 Present 0.025 0.03520 0.2831 0.1423 0.2407 4.4203 4.4309 1.1339

(0.8500) (0.0751)

0.0125 0.03418 0.2590 0.1418 0.2450 4.3834 4.3907 1.0904

(0.8500) (0.0625)

0.00833 0.03406 0.2576 0.1416 0.2461 4.3685 4.3713 1.0874

(0.8500) (0.0667)

Fusegi et al. [6] – – 0.1468 0.2471 – 4.361 –

(0.8547) (0.0647)

106 Present 0.025 0.02141 0.1423 0.08129 0.2382 9.2209 9.4202 0.9880

(0.8500) (0.0500)

0.0125 0.01991 0.1369 0.08105 0.2606 8.8582 8.8681 0.9262

(0.8500) (0.0375)

0.00833 0.01979 0.1366 0.08110 0.2587 8.7757 8.7732 0.9192

(0.8583) (0.0333)

Le Peutrec et al. [5] – – – – – 8.657 –

Fusegi et al. [6] – – 0.08416 0.2588 – 8.770 –

(0.8557) (0.0331)

Janssen et al. [8] – – 0.08099 0.2585 – 8.6393 0.9103

Haldenwang et al. [13] – – – – – 8.61 0.9175
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and u3 max are smaller than those by Fusegi et al. [6]

within a 1.6% difference. The location of u3 max at the

mid-plane of y ¼ 0:5 is the same with their results.

Hence, their results for a boundary layer thickness are

very similar to our results. As for the case of Ra ¼ 105,

the dependence on the grid spacing exists, particularly

for Nusselt numbers. This was due to the integration

procedures. In this case, our results for u1 max and u3 max

are also smaller than those by Fusegi et al. [6] within a

3.5% difference. As for the cases of Ra ¼ 106, our results

for u1 max and u3 max is in good agreements with the re-

sults by Janssen et al. [8]. They have conducted com-

putations on the 120· 120 · 120 non-uniform grid using

the second-order finite volume method.

Table 2 is the summary of the benchmark solutions

based on the original solutions. The benchmark solu-

tions were extrapolated from the two original solutions

by using the following Richardson extrapolation:
Xt ¼
X1 � ðD1=D2ÞmX2

1� ðD1=D2Þm
: ð21Þ
Here, X1 and X2 are the original solutions for the grid

spacing D1 and D2, respectively. Xt represents the extra-

polated benchmark solutions. Also m is the order of dis-

cretization error and it was assumed to be 4 in this paper.

As pointed out by de Vahl Davis [1], the order of accuracy

at the local grid point is not always constant, varying until

the grid spacing reaches zero. Therefore he had decided to

use the original solutions on the finest two grids for ex-

trapolation procedures and the order of accuracy m was

considered to be the same with that of the discretization

methods. In this paper, we followed their methodologies.

Fig. 3 shows the relationship between the grid spacing

and the percentage error for some selected characteristic

quantities. Solid lines are drawn by using the least square

method. From these dependencies, the order of discreti-

zation error m is not constant but in the range of 3.3–5.2.
4.2. Characteristics of flow and heat transfer

In this section, only the results on the

120 · 120 · 120 · 10 grids are shown for explanation of



Table 2

Summary of the present benchmark solutions

Ra /2 center x2 center u1 max ðzÞ u3 max ðxÞ Nu1=2 Numean Scenter

104 0.05492 1.1018 0.1984 0.2216 2.0636 2.0624 0.8634

(0.8250) (0.1177)

105 0.03403 0.2573 0.1416 0.2464 4.3648 4.3665 1.0867

(0.8500) (0.0677)

106 0.01976 0.1366 0.08111 0.2583 8.7097 8.6973 0.9175

(0.8603) (0.0323)
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Fig. 3. Relative percentage error for (a) /2 center, (b) x2 center and (c) Scenter (�: Ra ¼ 104, M: Ra ¼ 105, ·: Ra ¼ 106).

S. Wakashima, T.S. Saitoh / International Journal of Heat and Mass Transfer 47 (2004) 853–864 859
characteristics of flow and heat transfer in the cubic

cavity.

Temperature T , vorticity x2 and vector potential /2

contours at the mid-plane of y ¼ 0:5 of the cavity are

shown in Fig. 4, where ‘‘0(0.1)1’’ in the caption means

that the minimum contour is 0, the maximum contour is

1, and the contour increment is 0.1. The same goes for

other captions. Fig. 5 shows the velocity distributions of

u1 and u3 within the mid-plane of y ¼ 0:5 of the cavity.

These results are very favorable to those of the two-

dimensional results [1–3,13,14]. As seen in the figures,

the boundary layers near the vertical walls get thinner as

the Rayleigh number increases. In contrast, the bound-

ary layers near the upper and lower walls are not so thin

as near the vertical walls.

In Fig. 6, the cross-sectional velocity contours of u1
at x ¼ 0:5 and u3 at z ¼ 0:5 are drawn. Contours with

minus value are expressed by dashed lines. In the
Ra ¼ 104 case, the single point of the maximum (and

minimum) u1 is located at the mid-plane of y ¼ 0:5. On

the other hand, two peaks of u1 appear near the corners
for both the Ra ¼ 105 and 106 cases. Those locations for

Ra ¼ 106 become closer to the edges retaining its sym-

metry for the mid-plane of y ¼ 0:5 compared to those

for Ra ¼ 105. As for the u3 contours, two peaks have

already appeared in the Ra ¼ 104 case. As the Rayleigh

number increases, the peaks tend to move toward the

corners. These results suggested that the spiral flow

tubes were formed along the walls, and heat and mass

transfer take place mainly in that flow tube.

Fig. 7 shows the local Nusselt numbers, defined in

Eq. (16), of the vertical planes at x ¼ 0, 0.5 and 1, re-

spectively. The contours with minus values were also

drawn in dashed lines. A similar behavior of the cross-

sectional velocities for the locations of the maximum

local Nusselt number was also seen. For the Ra ¼ 104



Fig. 4. Temperature, vorticity x2 and vector potential /2 at the mid-plane of y ¼ 0:5. Ra ¼ 104: (a-1) T contours at 0(0.1)1; (a-2) x2

contours at )4.9(0.7)1.4; (a-3) /2 contours at 0(0.006)0.054. Ra ¼ 105: (b-1) T contours at 0(0.1)1; (b-2) x2 contours at )8.75(1.25)1.25;
(b-3) /2 contours at 0(0.004)0.04. Ra ¼ 106: (c-1) T contours at 0(0.1)1; (c-2) x2 contours at )16(2)2; (c-3) /2 contours at 0(0.002)0.018.
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case, the peak is just located on the centerline of the

cavity. In contrast, as the Rayleigh number increases,

two peaks appear near the corners, but they are very

weak and not clearly seen in the contours in Fig. 7(a-1)–

(c-1) and (a-3)–(c-3). As for the mid-plane of x ¼ 0:5
(Fig. 7(a-2)–(c-2)), two peaks also appear but their lo-

cations do not get closer to the sidewalls or edges as the

Rayleigh number increases. The peaks that appeared

seemed to be just getting sharpened. Figs. 7 and 6 in-
dicate that the heat transfer across the mid-plane of

x ¼ 0:5 are mainly done by advection, in contrast to the

area near the vertical boundaries.
5. Conclusions

In this paper, the new benchmark solutions for a

natural convection in a cubical cavity has been presented



Fig. 5. The velocity contours of u1 and u3 at the mid-plane of y ¼ 0:5. Ra ¼ 104: (a-1) u1 contours at )0.16(0.04)0.16; (a-2) u3 contours
at )0.2(0.05)0.2. Ra ¼ 105: (b-1) u1 contours at )0.15(0.03)0.15; (b-2) u3 contours at )0.2(0.05)0.2. Ra ¼ 106: (c-1) u1 contours at

)0.15(0.03)0.15; (c-2) u3 contours at )0.25(0.05)0.25.
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for Ra ¼ 104, 105 and 106 with Pr ¼ 0:71. The flow and

heat transfer characteristics were also clarified.

The computations were efficiently performed using

the fourth-order finite difference TSM, which is an effi-

cient and fast numerical solver for general heat transfer

and fluid flow problems.
The conclusions are summarized as follows:

(1) The computations were efficiently conducted

using the TSM, and temporally converged solutions were

obtained at the three Rayleigh numbers for Ra ¼ 104,

105 and 106 with Pr ¼ 0:71. The TSM can take a large



Fig. 6. Contours of the cross-sectional velocity vertical to the mid-planes of x ¼ 0:5 (left) and z ¼ 0:5 (right). Ra ¼ 104: (a-1) u1
contours at )0.16(0.04)0.16; (a-2) u3 contours at )0.2(0.05)0.2. Ra ¼ 105: (b-1) u1 contours at )0.14(0.02)0.14; (b-2) u3 contours at

)0.24(0.04)0.24. Ra ¼ 106: (c-1) u1 contours at )0.09(0.02)0.09; (c-2) u3 contours at )0.28(0.04)0.28.
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time step arbitrarily to be an outstanding time-saving

solver for the time-consuming problems such as the high

Rayleigh number problems computed in this paper.

(2) The resulted benchmark solutions with the fourth-

order of accuracy were obtained for a three-dimensional

natural convection in a cubical cavity of Rayleigh num-

bers of the 104, 105, and 106 and a Prandtl number of
0.71. The orders of discretization errors for selected

quantities are in the range of 3.3–5.2. The benchmark

solutions will be useful for evaluation of any numerical

methodologies for incompressible flows.

(3) The flow patterns and temperature distributions

are presented. As for the mid-plane of y ¼ 0:5, the re-

sults are very similar to those obtained in two-dimen-



Fig. 7. The local Nu number distributions of the vertical planes at x ¼ 0 (left), 0.5 (center) and 1 (right). Ra ¼ 104: (a-1) contours at

0.8(0.4)3.6; (a-2) contours at )4(2)12; (a-3) contours at 0.8(0.4)3.6. Ra ¼ 105: (b-1) contours at 1(1)8; (b-2) contours at )5(4)27; (b-3)
contours at 1(1)8. Ra ¼ 106: (c-1) contours at 2(2)18; (c-2) contours at )14(8)58; (c-3) contours at 2(2)18.
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sions. As the planes of z ¼ 0:5 or x ¼ 0:5, the cross-

sectional velocity contours show two peaks near the

corners with the Rayleigh numbers of 105 and 106. In

addition, the local Nusselt numbers on the isothermal

boundaries also show two weak peaks.
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